

4
5
6
7
8 *Squib*
9 *Notule*
10

11 ***Deriving four generalizations about nominals in three***
12 ***classifier languages***
13

14 TRANG PHAN
15 VNU University of Languages and International Studies, Hanoi
16 trangphan@vnu.edu.vn

17 TUE TRINH
18 Leibniz-Zentrum Allgemeiner Sprachwissenschaft, Berlin
19 tuetrinh@alum.mit.edu
20 and

21 HUNG PHAN Q1
22 Vietnam Institute of Linguistics, Hanoi
23 hungphanluong@gmail.com
24

25 ***Abstract***
26

27 This squib presents a set of facts concerning nominal structures in Bahnar, Mandarin, and
28 Vietnamese. It proposes an account of these facts which reduces them to cross-linguistic
29 differences with respect to the availability of particular syntactic configurations involving
30 the bare noun and its extended projection. These differences, in turn, are derived from
31 cross-linguistic variations with respect to the availability of items in the functional lexicon.

32 **Keywords:** classifiers, demonstratives, argumenthood, definiteness
33

34 ***Résumé***

35 Cette notule présente un ensemble de faits concernant les structures nominales en bahnar, mandarin
36 et vietnamien. Il propose une explication de ces faits qui les réduit à des différences interlinguis-
37 tiques par rapport à la disponibilité de configurations syntaxiques particulières impliquant le
38 nom nu et sa projection étendue. Ces différences, à leur tour, sont dérivées de variations interlin-
39 guistiques en ce qui concerne la disponibilité d'éléments du lexique fonctionnel.

40 **Mots-clés:** classificateurs, démonstratifs, statut argument/modificateur, définition
41

42 This research was funded by the Vietnam National Foundation for Science and
43 Technology Development (NAFOSTED) under grant number 602.02-2018.300 to the first
44 author, Trang Phan. The second author, Tue Trinh, also acknowledges the support of the
45 ERC Advanced Grant ERC-2017-ADG 787929.

46 1. CLASSIFIER LANGUAGES AND PARAMETRIC VARIATION

47 One fact about linguistic variation is that nouns which intuitively denote the same
 48 concept can have different combinatorial properties in different languages. In
 49 English, the noun **dog** can combine directly with the numeral **one**, as in **John has**
 50 **one dog**.¹ In Vietnamese, on the other hand, the noun **chó** ‘dog’ cannot combine directly
 51 with the numeral **một** ‘one,’ but requires the mediation of a “classifier” (CL).²

52

53 (1) John có một *(con) chó
 54 John have one CL dog
 55 ‘John has one/a dog’

56 This difference between English and Vietnamese is representative of the contrast
 57 between “number-marking” languages such as English, French, and German, and
 58 “classifier” languages such as Chinese, Vietnamese, and Japanese. It has been
 59 noted that variation exists among languages of both types. For example, bare
 60 nouns can be definite in Chinese but not in Vietnamese, while classifier-noun com-
 61 binations can be definite in Vietnamese but not in Chinese (see Cheng and Sybesma
 62 1999, Trinh 2011). Among number-marking languages, some, such as English and
 63 German, allow bare plurals to be arguments but others, such as French and Italian,
 64 do not. Such facts call for an account of the variation at both the macro level
 65 between classifier and number-marking languages, and at the micro level between
 66 languages within each group. This requires analysis and comparison of particular lan-
 67 guages of both types. A fair amount of work has been devoted to the semantics of
 68 nominals in number-marking languages (see Link 1983, Pelletier and Schubert
 69 1989, Barker 1992, Schwarzschild 1992, Krifka 1999, among others). Also, concrete
 70 proposals have been made to account for the macro-variation between classifier and
 71 number-marking languages, as well as for the micro-variation among the latter (see
 72 Krifka 1995; Chierchia 1998, 2010; Dayal 2004). Analyses of classifier languages,
 73 however, have been fewer and less explicit, and this is true to an even greater
 74 extent for the micro-variation between them. Works in this direction, to the best of
 75 our knowledge, tend to be heavily syntactic in nature, with semantic considerations
 76 playing a secondary role (see Cheng and Sybesma 1999, 2005; Saito et al. 2008; Wu
 77 and Bodomo 2009; Watanabe 2010, among others). This squib is an attempt at bal-
 78 ancing the situation. Our objective is to show that given appropriate formalization of
 79 certain concepts, several facts about the syntax and semantics of nominals in three
 80 classifier languages – Bahnar, Chinese, and Vietnamese – can be made to follow
 81 from independently motivated assumptions about the building blocks of semantic
 82 representations, as well as plausible hypotheses about linguistic variation.

83 The general framework we adopt will be the “principles and parameters” theory
 84 (see Chomsky 1993, 1995, 1998, 2004). This theory seeks to find out what is
 85 common to all languages (i.e. the principles), and what are the ways in which

86

87 ¹In text, object language expressions are **boldfaced**.

88 ²We follow the standard, albeit quite confusing, practice of using parentheses in examples:
 89 (α) means the expression is acceptable with or without α , $*(\alpha)$ means it is only acceptable with
 90 α , and $(*\alpha)$ means it is only acceptable without α .

91 languages can vary (i.e. the parameters). An influential view, which is sometimes
 92 called the “Borer-Chomsky conjecture,” holds that parametric variation is to be
 93 reduced to the lexicon, in particular the functional lexicon.³

94 For example, it has been proposed that whether wh-movement exists depends on
 95 C (see Huang 1981, 1982), whether V-raising exists depends on T (see Pollock 1989,
 96 Chomsky 1991), and whether N-raising exists depends on D (see Longobardi 2001,
 97 Cinque 2005). Of course, there is no a priori reason to assume that functional items
 98 are restricted to those of categories C, T, and D, or that variation is restricted to the
 99 ability to trigger movement. The term “functional category” is not definitional, and its
 100 extension is to be determined based on considerations of empirical adequacy as well
 101 as theoretical economy and elegance. In the same way, the possibility must be kept
 102 open that functional categories may differ not only with respect to their featural
 103 make-up, but also with respect to their availability: the functional lexicon of one
 104 language may contain a certain item which is absent from the functional lexicon of
 105 another language (see Manzini and Wexler 1987, Bőskovíc and Gajewski 2011).
 106 In this squib, we will argue that our three-way comparison of Bahnar, Chinese,
 107 and Vietnamese shows that differences of precisely this kind exist.

108 Before we end this introduction and get to the main discussion, we will
 109 address the question of the grammatical status of classifiers. While it is quite uncon-
 110 troversial to assume that elements such as definite articles, demonstratives, or silent
 111 type-shifting operators are functional items, it is less so with classifiers. As classifiers
 112 seem to indicate the “class” of the nouns, which is a cognitive notion, one might feel
 113 that classifiers should be considered substantives. Our assumption in this squib will be
 114 that they are functional items. We will now provide some justification for this
 115 assumption, using, without loss of generalization, examples from Vietnamese for
 116 illustration.⁴

117
 118 ³As far as we know, the term “Borer-Chomsky conjecture” was coined in Baker (2008:
 119 156), who formulates it thus: “All parameters of variation are attributable to differences in
 120 the features of particular items (e.g., the functional heads) in the lexicon.” Borer (1984: 3) pro-
 121 poses a theory which “restricts the availability of variation to the possibilities which are offered
 122 by one single component: the inflectional component.” In conjunction with the assumption that
 123 inflection is effected by functional heads, Borer’s thesis amounts to saying that variation is to
 124 be explained via the functional lexicon. And to quote from Chomsky (2001: 2): “Parametric
 125 variation is restricted to the lexicon, and insofar as syntactic computation is concerned, to a
 126 narrow category of morphological properties, primarily inflectional.” This is in the same
 127 spirit as Borer’s thesis.

128 ⁴Note, importantly, that we are talking about classifiers and not measure words such as **herd**,
 129 **cup**, or **kilogram**. Phrases such as **a herd of cows**, **a cup of milk**, or **a kilogram of meat** express
 130 measurements which are more or less purpose-related and exist in both classifier languages and
 131 number-marking languages. Classifier phrases such as **con chó** ‘CL dog’ express “natural
 132 units” (see Krifka 2003) and constitute the basis for a typological distinction. For more discussion
 133 on the differences between classifiers and measure words see Her (2012b, a). Note, also, that the
 134 view that classifiers and measure words should be clearly distinguished, while popular, is not one
 135 that has not been challenged. For an argument that these two categories are more similar than it
 appears, see Borer (2005).

136 One criterion for some lexical item to be considered “functional” is that it can be
 137 omitted without affecting the intended meaning: (2) will be understood as saying the
 138 same thing as (1), even though it will be perceived as an ungrammatical sentence.⁵

139 (2) *John có một chó
 140 John have one dog
 141 ('John has one/a dog')

142 Thus, classifiers do not add semantic content to the sentence.⁶ Related to this obser-
 143 vation is the fact that there is a degree of arbitrariness in the relation between a noun
 144 and the classifier that it requires. Take the classifiers **con** and **cái** in Vietnamese, for
 145 example. The first typically combines with nouns which denote animals, and the
 146 second typically combines with nouns which denote inanimate objects. However,
 147 the noun **thuyền** ‘boat’ may combine with both **con** and **cái**, and there is a strong
 148 preference, in standard Hanoi dialect at least, for combining the noun **dao** ‘knife’
 149 with **con** rather than with **cái**.

150 (3) a. John nhìn thấy một con/cái thuyền
 151 John see one CL boat
 152 ‘John sees a boat’

153
 154
 155
 156

157 ⁵We did not conduct an experiment to test this intuition systematically, but a cursory infor-
 158 mal survey of ten native speakers – five living in Hanoi and five living in Berlin – shows
 159 across-the-board agreement that (2) does not sound right and should be corrected to (1). We
 160 take this to be evidence that (2) is perceived as deviant, while expressing the same content
 161 as (1).

162 ⁶An anonymous reviewer pointed out that this claim needed to be qualified given cases of
 163 words changing their meaning in accordance with the classifier they combine with. An
 164 example from Vietnamese is the word **sáo** which means ‘flute’ when combined with the clas-
 165 sifier **cái** and means ‘starling’ when combined with the classifier **con**. We agree that the claim
 166 needs to be qualified, or more precisely, clarified. Here is what we say. We take a “word” to be
 167 a bundle of phonological, syntactic, and semantic properties. This, we believe, is an uncontro-
 168 versial position. Equally uncontroversial, in our opinion, is the agreement that two different
 169 words, whether by sheer chance or by historical accident, might have the same pronunciation.
 170 This means that in the case of **cái sáo** ‘flute’ vs. **con sáo** ‘starling,’ we really have two different
 171 words with the same pronunciation, each of which requires a different classifier. The argument
 172 generalizes to homophonous words whose meanings are more closely related. Thus, while clas-
 173 sifiers do not add semantic content to the sentence, they can disambiguate in the same way that
 174 pointing at a flute vs. pointing at a starling while uttering the word **sáo** can disambiguate. Now,
 175 having said this, we admit that reality is more complicated than the picture we just painted. The
 176 same reviewer brought to our attention cases in Bangla and Assamese where the classifier
 177 encodes the speaker’s attitude towards the referent of the sister NP. Obviously, appealing to
 178 homophony to defend the view that classifiers are functional would be unintuitive. Prima
 179 facie the move would then have to be to say that encoding speaker’s attitude is not “adding
 180 semantic content” in the sense required of a non-functional item. But we admit to having no
 satisfactory response to this critique, and agree with the reviewer that the issue is “best left
 for another venue.”

b. John cầm một con/?? cái dao
John hold one CL knife
'John is holding a knife'

Thus, the dependency between a noun and its accompanying classifier is, to some degree, similar to that between a noun and its grammatical gender in such languages as German and French.⁷

Another way in which noun-classifier dependency resembles grammatical gender is that combining a noun with a “wrong” classifier, just like inflecting a noun with a “wrong” gender, results in a grammatical error, not in a different meaning. Thus, the classifier to go with **chó** ‘dog’ is **con**, not **cái**, and the grammatical gender of **Haus** ‘house’ is neuter, not masculine, but combining **chó** ‘dog’ with the classifier **cái**, and **Haus** ‘house’ with a masculine determiner, will still convey the intended meaning, even though the sentence is perceived as formally deviant.

(4) a. *John có một cái chó
 John have one CL dog
 ('John has one/a dog')
 b. *John hat einen Haus
 John have one.masc house
 ('John has one/a house')

Last but not least, classifiers show two properties which have been considered distinctive of functional items. First, they are a closed class: while it is imaginable a company might invent a new noun to name a new product, it is unimaginable for it to invent a new classifier to count items of that new product. Second, classifiers have a “world independent” semantics: their denotation stays constant across different states of affairs. This will become clear in the discussion below. At this point, we take these considerations to be sufficient reasons for assuming that classifiers are functional items.

2. FOUR GENERALIZATIONS ABOUT BAHNAR, MANDARIN, AND VIETNAMESE

Bahnar and Mandarin are similar to Vietnamese in being “classifier languages” of the East Asian variety: nouns can only combine with numerals through the mediation of a classifier, as has been illustrated for Vietnamese in the previous section. Let us now turn to the discussion of demonstratives, argumenthood, and definiteness in these three languages.⁸

⁷Note that functional items indicating grammatical gender can disambiguate in the same way classifiers do, as discussed in footnote 6. An example from German is the masculine noun **Gehalt**, which means ‘content,’ and the neuter noun **Gehalt**, which means ‘salary.’ The homophony of these two historically related but synchronically distinct words can be disambiguated by the masculine definite article **der** and the neuter definite article **das**.

⁸Observations on Vietnamese are based on intuitions of all three authors, who are native speakers of this language. Observations on Bahnar are based on field work done by the third author. Observations on Mandarin Chinese are based on Cheng and Sybesma (1999).

226 In Mandarin and Vietnamese, a demonstrative requires a classifier but does not
 227 require a numeral, as shown in (5a) and (5b), respectively.

228 (5) a. nei (liang) zhi gou
 229 DEM two CL dog
 230 ‘those two dogs’
 231
 232 b. (hai) con chó đó
 233 two CL dog DEM
 234 ‘those two dogs’

235 In Bahnar, on the other hand, a demonstrative requires both a classifier and a numeral,
 236 as shown in (6).

237 (6) *(?bal) tɔ? kɔ? nej
 238 two CL dog DEM
 239 ‘those two dogs’

240 Let us state the first generalization.

241 (7) Generalization 1
 242 DEM can combine with CL-NP in Mandarin and Vietnamese, but not in Bahnar

244 Regarding argumenthood, bare classifier phrases (i.e. those of the form CL-NP)
 245 can be verbal arguments in Vietnamese, as shown in (8).

247 (8) con chó muốn sang đường
 248 CL dog want cross road
 249 ‘The dog wants to cross the street’

250 In contrast, this does not hold for Bahnar and Mandarin, as shown in (9a) and (9b),
 251 respectively.

252 (9) a. *tɔ? kɔ? wa? kwa tʂɔŋ
 253 CL dog want cross road
 254 b. *zhi gou yao guo malu
 255 CL dog want cross road

256 Let us state the second generalization.

257 (10) Generalization 2
 258 CL-NP can be verbal arguments in Vietnamese but not in Bahnar or Mandarin

260 We take the semantic type of intransitive and transitive verbs to be $\langle e, t \rangle$ and $\langle e, \langle e, t \rangle \rangle$,
 261 respectively. For example, $\llbracket \text{smokes} \rrbracket = [\lambda x: x \in D_e \cdot x \text{ smokes}]$
 262 and $\llbracket \text{loves} \rrbracket = [\lambda y: y \in D_e \cdot [\lambda x: x \in D_e \cdot x \text{ loves } y]]$. (see Heim and Kratzer 1998,
 263 and see footnote 11 below for an explanation of the lambda notation). When we
 264 say that a nominal is an argument of a verb, what we mean is that the nominal or
 265 its trace is interpreted as an argument to the function denoted by the verb, which
 266 entails that only nominals which are of type e or have traces of type e can be argu-
 267 ments. This is the sense in which Chierchia (1998) uses the term “argumental” in
 268 classifying nominals (see e.g. Chierchia 1998:344). Now, it has been proposed that
 269 nominals of type $\langle e, t \rangle$, when they are in object position, can compose with the
 270 verb via the rule of Restrict (see Chung and Ladusaw 2004, Trinh and Sudo 2009,

Trinh 2011). What Restrict does can be described informally as making a new verb out of a verb and a nominal. This means that nominals which compose with verbs via Restrict are not verbal arguments, in our terminology. Since subjects cannot compose with verbs via Restrict, the fact that a nominal cannot be subject can be considered evidence that it is not of type *e* (i.e. that it cannot be a verbal argument). Thus, the subject position provides a more reliable diagnostic for argumenthood than the object position. For this reason, we will disregard the object position in our discussion on argumenthood. Note that in other discussions, say one on whether numerals can combine directly with nouns, the position of the relevant nominal will play no role. Thus, examples (1), (2) and (3) all have the nominal in object position. This does not affect anything which we have just said regarding argumenthood.⁹

Regarding definiteness, bare numeral phrases, that is, those of the form Num-CL-NP, can be definite in Bahnar and Vietnamese, as shown in (11a) and (11b), respectively.

(11) a. ?bal to? kɔ? wa? kwa tʂrɔŋ
 two CL dog want cross road
 ‘The two dogs want to cross the road.’

b. hai con chó muôn sang đường
 two CL dog want cross road
 ‘The two dogs want to cross the road.’

This does not hold for Mandarin, as shown in (12).

(12) *liang zhi gou yao guo malu
 two CL dog want cross road
 (‘The two dogs want to cross the road.’)

Let us state the third generalization.

(13) Generalization 3
 Num-CL-NP can be definite in Bahnar and Vietnamese, but not in Mandarin

Also regarding definiteness, bare nouns can be definite in Bahnar and Mandarin, as shown in (14a) and (14b), respectively.

(14) a. kɔ? wa? kwa tʂrɔŋ
 dog want cross road
 ‘The dog(s) want(s) to cross the road.’

b. gou yao guo malu
 dog want cross road
 ‘The dog(s) want(s) to cross the road.’

In Vietnamese, however, bare nouns cannot be definite, as shown in (15).

(15) chó muôn sang đường
 dog want cross road
 *‘The dog(s) want(s) to cross the road.’

⁹We thank an anonymous reviewer for drawing our attention to this issue.

	Bahnar	Mandarin	Vietnamese	
DEM can combine directly with CL-NP	No	Yes	Yes	Generalization 1
CL-NP can be arguments	No	No	Yes	Generalization 2
NUM-CL-NP can be definite	Yes	No	Yes	Generalization 3
Bare NP can be definite	Yes	Yes	No	Generalization 4

Table 1: Four generalizations about Bahnar, Mandarin, and Vietnamese

Let us state the fourth generalization.

(16) Generalization 4

Bare NP can be definite in Bahnar and Mandarin, but not in Vietnamese

Table 1 summarizes the facts about Bahnar, Mandarin and Vietnamese which we have just discussed.

As we can see, three typologically similar languages can display subtle, intricate and quite puzzling distinctions in distribution and interpretation with respect to the nominal domain. We will propose an account of the four generalizations established above which derives these distinctions from the sort of parametric variations mentioned in the introduction, namely differences in terms of availability of items in the functional lexicon.

3. DERIVING THE GENERALIZATIONS

Our analysis of the facts just presented extends the proposal, made in Trinh (2011) for the differences between Mandarin and Vietnamese, to include Bahnar. The definitions below, save that of K_2 in (22b), are taken from that work, barring notational differences which are not substantial. The section will start with some theoretical groundwork, and ends with the derivation of the four generalizations stated above, in the form of informal proofs.

3.1 Theoretical groundwork

This section lays out some assumptions and terms that underlie our analysis. It should be noted that most, if not all, of these assumptions have been motivated elsewhere, in particular in Chierchia (1998) and Trinh (2011) as well as in works cited therein.

3.1.1 Bare nouns

Following Chierchia (1998) and several others, bare nouns will be assumed to denote atomic predicates (i.e. sets of singularities) in number-marking languages, and to denote cumulative predicates (i.e. sets of both singularities and pluralities) in classifier languages. Thus, suppose a , b and c are the only dogs in world w , then the English word **dog** denotes, in w , the set $\{a, b, c\}$, while the denotation in w of its

361 Vietnamese counterpart, **chó**, is the set $\{a, b, c, a \oplus b, a \oplus c, b \oplus c, a \oplus b \oplus c\}$,
 362 where $x \oplus y$ is the plurality consisting of x and y .¹⁰ The lexical entries for **dog** and
 363 **chó** are given in (17b).¹¹

364 (17) a. $[\![\text{dog}]\!]^w = [\lambda x. x \text{ is a singular dog}] = \{a, b, c\}$

365 b. $[\![\text{chó}]\!]^w = [\lambda x. x \text{ is a singular dog or a plurality of dogs}] = \{a, b, c, a \oplus$
 366 $b, a \oplus c, b \oplus c, a \oplus b \oplus c\}$

367 Let ' $x \sqsubset y$ ' mean x is a proper part of y and ' $x \sqsubseteq y$ ' mean that x is a part of y , i.e. is a
 368 proper part of or identical to y . Thus, $a \sqsubset a \oplus b$ and $a \oplus b \sqsubseteq a \oplus b$, but $a \oplus b \not\sqsubseteq a \oplus b$.

371 3.1.2 *Numerals*

372 For the semantics of numerals, the function *sup* is defined as one which maps a predicate P to the “supremum” of P , which is to say, that entity which has all and only
 373 members of P as (proper or non-proper) part.

374 (18) $x \in \text{sup}(P) \Leftrightarrow_{\text{def}} \forall y(y \in P \leftrightarrow y \sqsubseteq x)$

375 Suppose $P = \{a, b, c, a \oplus b\}$, then $\text{sup}(P) = a \oplus b \oplus c$.¹² Counting requires uniformity: only individuals with the same number of atomic parts can be counted
 376 (Ionin and Matushansky 2006).¹³ Uniformity is defined in (19), where n is a variable
 377 ranging over natural numbers and x_P is the number of parts of x that are P .¹⁴

378 (19) $P \text{ is uniform} \Leftrightarrow_{\text{def}} \exists n(\forall x(P(x) \rightarrow |x|_P = n))$

379 To illustrate, the lexical entry for the numeral **two** is given in (20), where $\wp(P)$ is the
 380 power set of P , i.e. $\wp(P) = \{Q | Q \subseteq P\}$.

381 (20) $[\![\text{two}]\!]^w(P) = [\lambda x. \exists y(y \in \wp(P) \wedge |y|_P = 2 \wedge x = \text{sup}(y))] \text{ if } P \text{ is uniform, undefined}$
 382 otherwise

383 Thus, numerals are of type $\langle\langle e, t \rangle, \langle e, t \rangle\rangle$, that is, the type of restrictive modifiers.
 384 Suppose $P = \{a, b, c\}$, then $[\![\text{two}]\!]^w(P) = \{a \oplus b, a \oplus c, b \oplus c\}$. However, if
 385 $P = \{a, b, a \oplus b\}$, then $[\![\text{two}]\!]^w(P)$ will be undefined, as P is not uniform.

391 ¹⁰What holds for bare nouns in Vietnamese is assumed to hold for bare nouns in Bahnar and
 392 Mandarin also.

393 ¹¹The λ -notation is used here as proposed in Heim and Kratzer (1998: 34–35) which has
 394 become standard: “[$\lambda \alpha: \phi. \gamma$]” represents the smallest function which maps every α such that
 395 ϕ to γ , where α is the argument variable, ϕ the domain condition, and γ the value description.
 396 Following standard practice, we use lower case “ x ,” “ y ” for variables of type e , and upper case
 397 “ P ,” “ Q ” for variables of type $\langle e, t \rangle$. Note that the domain condition is omitted when there is no
 398 need to make it explicit.

399 ¹²Note that the supremum of P does not have to be a member of P .

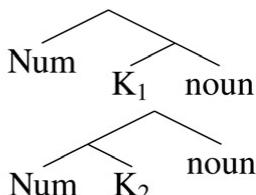
400 ¹³The reason for this requirement is obvious: if individuals of different numerosity, say a
 401 and $b \oplus c$, can be considered units in counting, we would not know how many dogs there are
 402 when we hear ‘**there are two dogs**’.

403 ¹⁴Limiting n ’s range to natural numbers serves to simplify the exposition and suffices for
 404 present purposes, but will obviously raise questions about such sentences as **John read 2.5**
 405 **Russian novels**. We leave such issues for other occasions (see Haida and Trinh 2016, 2021
 406 for discussion).

406 3.1.3 *Classifiers*

407 From what has just been said, it follows that numerals cannot combine with bare
 408 nouns in classifier languages, since these nouns denote cumulative predicates
 409 which are not uniform. This is why mediation of the classifier is required. The func-
 410 tion *at* is defined as one which maps any cumulative predicate P to a subset of P
 411 whose members have no proper parts that are P .
 412

$$413 (21) x \in \text{at}(P) \Leftrightarrow_{\text{def}} x \in P \wedge \neg \exists y (y \in P \wedge yx)$$


414 We are now ready to propose meanings for the classifier. Anticipating the discussion
 415 which will come presently, we define two types of classifiers, K_1 and K_2 ¹⁵

$$416 (22) \text{a. } [[K_1]]^w = [\lambda P. \text{at}(P)] [[\text{KIND } \text{NP}]]^w = [\lambda w$$

$$417 \text{b. } [[K_2]]^w = [\lambda n : n \in D \langle \langle e, t \rangle, \langle e, t \rangle \rangle [\lambda P. n(\text{at}(P))]]$$

418 As we can see, K_1 maps a predicate to a predicate, while $[[K_2]]$ maps a numeral and a
 419 predicate P to a predicate. This means we have two different bracketings for numeral
 420 phrases of the surface profile [Num K noun].
 421

$$422 (23) \text{a. }$$

$$423 \text{b. }$$

424 Both of these structures have been argued to exist. Specifically, it has been proposed
 425 that Chinese opts for (23a) and Japanese for (23b) (see Saito et al. 2008). We will
 426 argue that Chinese and Vietnamese opt for (23a) while Bahnar opts for (23b).
 427

431 3.1.4 *Definiteness and kind reference*

432 A silent morpheme *the* is defined which has roughly the same meaning as the English
 433 definite article **the**. Specifically, $[[\text{THE}]]^w$ maps a P to the “maximal” entity in P if
 434 there is one, undefined otherwise. This captures both the existence and uniqueness
 435 presuppositions of definiteness (see Heim 1991).
 436

$$437 (24) [[\text{THE}]]^w(P) = \text{sup}(P) \text{ if } \text{sup}(P) \in P, \text{ undefined otherwise}$$

438 Suppose $P = \{a\}$, then $[[\text{THE}]]^w(P) = a$. If $P = \{a, b, a \oplus b\}$, then
 439 $[[\text{THE}]]^w(P) = a \oplus b$. However, if $P = \{a, b\}$ or $P = \emptyset$, then $[[\text{THE}]]^w(P)$ will be
 440 undefined. This is the same THE as in Trinh (2011).
 441

442 Among the individuals in the universe of discourse, there are kinds, which are
 443 functions from properties to individual concepts (see Chierchia and Turner 1988;
 444 Chierchia 1998). A silent morpheme *kind* is defined which turns nouns into names
 445 of kinds in (23), where $\oplus P$ is the \oplus -closure of P , i.e. $\oplus P = \{\text{sup}(Q) | Q \subseteq P\}$.¹⁶
 446

447 ¹⁵ K_1 is Trinh’s (2011) CL. K_2 does not feature in that work, and is motivated here by the
 448 observations about Bahnar.

449 ¹⁶Note that *kind* is *K* in Trinh (2011). The definition imposes on *kind* the requirement that
 450 its argument be a cumulative predicate, and that its extension contain more than one element in

451 (25) $\llbracket \text{KIND NP} \rrbracket^w = [\lambda w. \text{sup}(\llbracket \text{NP} \rrbracket^w)]$ if $\llbracket \text{NP} \rrbracket^w = \oplus \llbracket \text{NP} \rrbracket^w$ and $\exists w: |\llbracket \text{NP} \rrbracket^w| > 1$,
 452 undefined otherwise

453 Thus, $\llbracket \text{KIND} \rrbracket^w$ maps each cumulative predicate P into the function from each world w
 454 to $\llbracket \text{THE NP} \rrbracket^w$. Note that this definition of kind entails that neither [CL NP] nor [Num
 455 CL NP] can combine with kind, as these are not cumulative predicates.

456 In addition to the operator kind, the inverse of kind is also defined. It is ext,
 457 which is also a silent morpheme and which maps kinds into the plurality which
 458 instantiate them in each world.¹⁷

459 (26) $\llbracket \text{EXT} [\text{KIND NP}] \rrbracket^w = \llbracket \text{KIND NP} \rrbracket^w(w)$

460 In addition, we propose the following preference principle. At this point we will have
 461 to assume that this is a primitive of natural language grammar.¹⁸

462 (27) The kind-over-THE principle

463 If both $\llbracket \text{[KIND } \alpha \text{]} \rrbracket^w$ and $\llbracket \text{[THE } \alpha \text{]} \rrbracket^w$ are defined, use [KIND α] instead of [THE α]

464 In other words, when it is possible to use kind, it is not possible to use THE.

465 3.2 Accounting for the facts

466 We are now in the position to derive the generalizations established in section 2. Our
 467 proposal concerns only the functional lexicon, and is quite simple. Specifically, we
 468 assume that Mandarin and Vietnamese differ in the way proposed by Trinh (2011),
 469 and add Bahnar to the list. Our addition results in the following: (i) Bahnar has K_2
 470 but not K_1 , while the opposite holds for Mandarin and Vietnamese; (ii) Bahnar
 471 and Vietnamese have THE but Mandarin does not; (iii) all three languages have
 472 KIND; (iv) Bahnar and Mandarin have EXT but Vietnamese does not. Table 2 sum-
 473 marizes this cross-linguistic distribution of the functional morphemes K_1 , K_2 , the,
 474 kind and EXT.

475 This distribution of functional items across Bahnar, Mandarin, and Vietnamese
 476 have consequences for the availability of syntactic structures among these three lan-
 477 guages. It turns out that these consequences match the generalizations established in
 478 section 2 precisely. Let us now derive these.

479 First, consider generalization 1, repeated below as (26).

480 (28) Generalization 1

481 DEM can combine with CL-NP in Mandarin and Vietnamese, but not in Bahnar

482
 483 at least some possible world (X is the cardinality of set X). The first requirement prevents the
 484 kind reading for singular nouns in English and CL-NP combinations in Vietnamese. The
 485 second requirement prevents concepts that are necessarily true of singularities only, for
 486 example ‘being Noam Chomsky’ or ‘being the shoe on my left foot,’ from serving as names
 487 of kinds (see Chierchia 1998). Both requirements are empirically motivated.

488
 489 ¹⁷Trinh (2011) uses the same name for the inverse of the kind operator, which is called K
 490 there. Note that ext is of type $\langle\langle s, e \rangle, e \rangle$.

491
 492 ¹⁸This is the “Preference Principle” proposed in Trinh (2011), with the if-clause added.
 493 Thus, it makes more explicit what is assumed in Trinh (2011).

	Bahnar	Mandarin	Vietnamese
K ₁	No	Yes	Yes
K ₂	Yes	No	No
the	Yes	No	Yes
kind	Yes	Yes	Yes
ext	Yes	Yes	No

Table 2: Functional elements in nominal structures

Proof – There are two possible parses for the DEM-CL-NP string: either [DEM [CL NP]] or [[DEM CL] NP].¹⁹ Under the standard assumption that demonstratives, just like definite and indefinite articles, take predicates (i.e. expressions of type $\langle e, t \rangle$) as arguments, [[DEM CL] NP] is excluded, since neither K₁ nor K₂, our options for CL, is of type $\langle e, t \rangle$.²⁰ Thus, [DEM [CL NP]] is the only possible parse. Given that NP is a predicate, hence of type $\langle e, t \rangle$, CL in the DEM-CL-NP string must be of type $\langle\langle e, t \rangle, \tau \rangle$ where τ is some arbitrary type. As K₁ is of type $\langle\langle e, t \rangle, \langle e, t \rangle \rangle$ and K₂ of type $\langle\langle\langle e, t \rangle, \langle e, t \rangle, \langle e, t \rangle \rangle \rangle$, CL in the DEM-CL-NP string must be K₁ and cannot be K₂. Since Bahnar has K₂, not K₁, while Mandarin and Vietnamese have K₁, not K₂, the DEM-CL-NP string can be generated in Mandarin and Vietnamese but not in Bahnar. QED.

Next, consider generalization 2, repeated below as (27).

(29) Generalization 2

CL-NP can be verbal arguments in Vietnamese, but not in Bahnar or Mandarin

Proof – Verbal arguments are of type e (Heim and Kratzer 1998). By hypothesis, [K₁ NP] is of type $\langle e, t \rangle$ and [K₂ NP] is a type mismatch, that is, uninterpretable. This means that for a language to have CL-NP as verbal argument, it must have K₁ and it must have a silent operator which maps [K₁ NP] into an expression of type e . From the inventory of silent operators postulated above, only the fits the description of such an operator, which means that among the three languages under discussion, only Vietnamese fits the description of such a language: it is the only language to have both K₁ and the in its functional lexicon. QED.

Next, consider generalization 3, repeated below as (28).

(30) Generalization 3

Num-CL-NP can be definite in Bahnar and Vietnamese, but not in Mandarin

¹⁹We assume that DEM, CL, and NP are adjacent and together make up one constituent, that is to say, there is no movement nor intervening empty categories. We thanks an anonymous reviewer for pointing out the necessity of this qualification.

²⁰An anonymous reviewer raises the question of whether it is correct to claim that DEM takes predicates as arguments, given the fact that in languages like Portuguese and Greek exhibit DEM + definite article + NP sequences. We have not investigated the relevant phenomena and can only say, at this point, that what we analyze as DEM here might be split into the definite article plus another element in those languages.

Proof – By virtue of the definition of K_1 and K_2 , the Num-CL-NP string is parsed as $[[\text{Num CL}] \text{ NP}]$ in Bahnar and as $[\text{Num} [\text{CL NP}]]$ in Mandarin and Vietnamese. Both of these structures, however, are expressions of type $\langle e, t \rangle$. Thus, the only way for a language to have Num-CL-NP interpretable as definite is for it to have a silent operator which maps expressions of type $\langle e, t \rangle$ into definite descriptions. Again, THE is the only item among those postulated above which can do this. As it is available in Bahnar and Vietnamese but not in Mandarin, we derive generalization 3. QED.²¹

Finally, consider generalization 4, repeated below as (31).

(31) Generalization 4

Bare NP can be definite in Bahnar and Mandarin, but not in Vietnamese

Proof – From the definition of THE, KIND and EXT, it follows that there are two parses of NP, which results in a definite description: either $[\text{THE NP}]$ or $[\text{ext} [\text{KIND NP}]]$. Given the kind-over-the principle, $[\text{THE NP}]$ is unavailable in Bahnar and Vietnamese, since these languages have both the and kind. By hypothesis, Mandarin does not have the, so $[\text{THE NP}]$ is not available in Mandarin either. Thus, the only way for a bare NP to be definite in Bahnar, Mandarin, or Vietnamese is to be parsed as $[\text{EXT} [\text{KIND NP}]]$. As Bahnar and Mandarin have ext, while Vietnamese does not, bare NPs can be definite in the first two, but not in the last. QED.

4. CONCLUSION

We have established four generalizations about the syntax and semantics of nominal structures in three classifier languages – Bahnar, Mandarin, and Vietnamese – which show an intricate pattern of cross-linguistic variation. We developed an analysis which derives these generalization purely in terms of differences among the three languages with respect to their functional lexicon. Specifically, we defined pieces of formal meaning which have been given empirical motivation in other works, and advanced a proposal as to which piece is realized as a functional item in which language. We then showed that syntactic and semantic consequences of our proposal match the four generalizations we established in a precise manner.²² The set of

²¹An anonymous reviewer pointed out that our conclusion disagrees with the proposal made in Rullmann and You (2006), which provides an e -type analysis of CL-NP in Mandarin. We acknowledge and thank the reviewer for drawing our attention to this fact.

²²An anonymous reviewer raised the issue of “explanatory adequacy”: How do children acquire grammars which involve such silent operators as THE and KIND from the primary linguistic data? We admit that regarding this conceptually important issue we have nothing more concrete to say than the general statements made in the introduction, namely that acquisition is setting of parameters and variation is confined to the functional lexicon. We would note, in this connection, that the lack of a specific hypothesis about how the proposed syntactic and semantic analysis squares with theories of language acquisition is, in our view, a feature common to many, if not most, of the works in the technical literature. The same reviewer pointed out that our account would be more explanatorily adequate if further facts were presented whose description required the elements of our analysis, and in addition to showing that the data *can* be, we also show that they *have to* be, analyzed the way we propose. This point is, of course, valid, and the criticism could be made that our present proposal is more

586 facts we discussed is admittedly compact, but its small size allows a fully explicit
 587 account to be formulated which forces puzzling stipulations such as the kind-over-
 588 the principle to be manifest and which makes it possible to execute exact computa-
 589 tions of the meaning of syntactic structures. In addition, it invites expansion of the
 590 data base which we hope to pursue in future work.

592 REFERENCES

594 Baker, Mark C. 2008. *The syntax of agreement and concord*. Cambridge: Cambridge
 595 University Press.

596 Barker, Chris. 1992. Group terms in English: Representing groups as atoms. *Journal of
 597 Semantics* 9(1): 69–93.

598 Borer, Hagit. 1984. *Parametric syntax: Case studies in Semitic and Romance languages*.
 599 Dordrecht: Foris.

600 Borer, Hagit. 2005. *Structuring sense, Volume 1: In name only*. Oxford: Oxford University
 601 Press on Demand.

602 Bōšković, Željko, and Jon Gajewski. 2011. Semantic correlates of the NP/DP parameter.
 603 *Proceedings of NELS* 39: 121–134.

604 Cheng, Lisa Lai Shen, and Rint Sybesma. 1999. Bare and not-so-bare nouns and the structure
 605 of NP. *Linguistic Inquiry* 30(4): 509–542.

606 Cheng, Lisa Lai Shen, and Rint Sybesma. 2005. Classifiers in four varieties of Chinese. In *The
 607 Oxford Handbook of Comparative Syntax*, ed. Guglielmo Cinque and Richard Kayne,
 608 259–292. Oxford: Oxford University Press.

609 Chierchia, Gennaro. 1998. Reference to kinds across languages. *Natural Language Semantics*
 610 6(4): 339–405.

611 Chierchia, Gennaro. 2010. *Meaning as an inferential system: Polarity and free choice phenom-
 612 ena*. Cambridge, MA: Harvard University Press.

613 Chierchia, Gennaro, and Raymond Turner. 1988. Semantics and property theory. *Linguistics
 614 and Philosophy* 11(3): 261–302.

615 Chomsky, Noam. 1991. Some notes on economy of derivation and representation. In
 616 *Principles and parameters in comparative grammar*, ed. Robert Freidin, 417–454.
 617 Cambridge, MA: MIT Press.

618 Chomsky, Noam. 1993. A minimalist program for linguistic theory. In *The view from building
 619 20: Essays in linguistics in honor of Sylvain Bromberger*, ed. Kenneth Hale and Samuel Jay
 620 Keyser, 1–52. Cambridge, MA: MIT Press.

621 Chomsky, Noam. 1995. *The Minimalist Program*. Cambridge, MA: MIT Press.

622 Chomsky, Noam. 1998. Minimalist inquiries. *MIT Working Papers in Linguistics* 15.

623 Chomsky, Noam. 2001. Derivation by phase. In *Ken Hale: A Life in Linguistics*, ed. Michael
 624 Kenstowicz, 1–52. Cambridge, Massachusetts: MIT Press.

625 Chomsky, Noam. 2004. Beyond explanatory adequacy. In *Structures and beyond: The cartog-
 626 raphy of syntactic structures*, ed. Adriana Belletti, vol. 3, 104–131. Oxford: Oxford
 627 University Press.

628 Chung, Sandra, and William A. Ladusaw. 2004. *Restriction and saturation*. Cambridge, MA:
 629 MIT Press.

630 like the work of an engineer whose goal is primarily to get things to work than that of a scientist
 631 whose goal is primarily to explain why things work the way they do. To this we can only say:
 632 “guilty as charged.”

631 Cinque, Guglielmo. 2005. Deriving Greenberg's universal 20 and its exceptions. *Linguistic*
632 *Inquiry* 36(3): 315–332.

633 Dayal, Veneeta. 2004. The universal force of free choice *any*. *Linguistic Variation Yearbook*
634 4(1): 5–40.

635 Haida, Andreas, and Tue Trinh. 2016. Beyond density. Talk given at the Exh Workshop, MIT.

636 Haida, Andreas, and Tue Trinh. 2021. Splitting atoms in natural language. In *Formal*
637 *approaches to number in Slavic and beyond*, ed. Mojmír Döcekal and Marcin Wagiel,
638 277–296. Language Science Press.

639 Heim, Irene. 1991. (Artikel und Definitheit. In *Semantik: Ein internationales Handbuch der*
640 *zeitgenössischen Forschung*), ed. Arnim von Stechow and Dieter Wunderlich, 487–
641 535. Berlin: De Gruyter.

642 Heim, Irene, and Angelika Kratzer. 1998. *Semantics in Generative Grammar*. Oxford:
643 Blackwell.

644 Her, One-Soon. 2012a. Distinguishing classifiers and measure words: A mathematical perspec-
645 tive and implications. *Lingua* 122: 1668–1691.

646 Her, One-Soon. 2012b. Structure of classifiers and measure words: A lexical functional
647 account. *Language and Linguistics* 13(6): 1211–1251.

648 Huang, C.-T. James. 1981. Move *Wh* in a language without *Wh* movement. *The Linguistic*
649 *Review* 1: 369–416.

650 Huang, C.-T. James. 1982. *Logical relations in Chinese and the theory of grammar*. Doctoral
651 dissertation, Massachusetts Institute of Technology.

652 Ionin, Tanya, and Ora Matushansky. 2006. The composition of complex cardinals. *Journal of*
653 *Semantics* 23(4): 315–360.

654 Krifka, Manfred. 1995. Common nouns: a contrastive analysis of English and Chinese. In *The*
655 *generic book*, ed. Greg Carlson and Francis Jeffrey Pelletier, 398–411. Chicago:
656 University of Chicago Press.

657 Krifka, Manfred. 1999. Mass expressions. In *Concise encyclopedia of grammatical categories*,
658 ed. Keith Brown and Jim Miller, 221–223. Amsterdam: Elsevier.

659 Krifka, Manfred. 2003. Bare NPs: Kind-referring, indefinites, both, or neither? *Proceedings of*
660 *SALT* 13: 180–203.

661 Link, Godehard. 1983. The logical analysis of plurals and mass terms: A lattice-theoretical
662 approach. In *Meaning, use, and the interpretation of language*, ed. Rainer Baeuerle,
663 Christoph Schwarze, and Arnim von Stechow, 302–323. Berlin: de Gruyter.

664 Longobardi, Giuseppe. 2001. The structure of DPs: Some principles, parameters, and prob-
665 lems. In *Handbook of contemporary syntactic theory*, ed. Mark Baltin and Chris
666 Collins, 562–603. Oxford: Blackwell.

667 Manzini, M. Rita, and Kenneth Wexler. 1987. Parameters, binding theory, and learnability.
668 *Linguistic Inquiry* 18(3): 413–444.

669 Pelletier, Francis Jeffrey, and Lenhart K. Schubert. 1989. Mass expressions. In *Handbook of*
670 *philosophical logic*, ed. Dov Gabbay and Franz Guenthner, vol. 4, 327–407. Dordrecht:
671 Reidel: Springer.

672 Pollock, Jean-Yves. 1989. Verb movement, UG and the structure of IP. *Linguistic Inquiry* 20
673 (3): 365–424.

674 Rullmann, Hotze, and Aili You. 2006. General number and the semantics and pragmatics of
675 indefinite bare nouns in Mandarin Chinese. In *Where semantics meets pragmatics*, ed.
676 Klaus von Heusinger and Ken Turner, 175–196. Amsterdam: Elsevier.

677 Saito, Mamoru, Jonah T.-H. Lin, and Keiko Murasugi. 2008. N'ellipsis and the
678 structure of noun phrases in Chinese and Japanese. *Journal of East Asian Linguistics*
679 17(3): 247–271.

676 Schwarzschild, Roger. 1992. Types of plural individuals. *Linguistics and Philosophy* 15(6):
677 641–675.

678 Trinh, Tue. 2011. Nominal reference in two classifier languages. *Proceedings of Sinn und
679 Bedeutung* 15: 629–644.

680 Trinh, Tue, and Yasutada Sudo. 2009. The Indefiniteness Effect in Mandarin and Vietnamese.
681 Talk given at Zentrum für Allgemeine Sprachwissenschaft Berlin.

682 Watanabe, Akira. 2010. Notes on nominal ellipsis and the nature of *no* and classifiers in japa-
683 nese. *Journal of East Asian Linguistics* 19(1): 61–74.

684 Wu, Yicheng, and Adams Bodomo. 2009. Classifiers ≠ determiners. *Linguistic Inquiry* 40(3):
685 487–503.

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720