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Abstract. The derivation of strengthened meanings as proposed by
Bar-Lev and Fox (2017, 2020) and the derivation of modal domains as
proposed by Kratzer (1977, 1981, 1991) both involve an “inclusion” step
of assigning true to as many propositions in a given set as possible. In the
case of strengthened meanings, this set contains the scalar alternatives.
In the case of modal domains, it contains the propositions in the ordering
source. In this note, we explicate what is common and what is distinct
between the two inclusion procedures. We then point out that the formal
distinction makes no empirical difference for the cases of strengthened
meaning so far considered in the literature. We conjecture that this fact
holds generally for all cases of strengthened meaning.
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1 Two Steps of Exhaustification

1.1 Exclusion

The “grammatical approach to implicatures” takes the strengthened meaning of
a sentence p, i.e. the conjunction of p and its implicatures, to result from applying
an exhaustivity operator exh to p (cf. Fox 2007; Chierchia et al. 2012). Fox (2007)
proposes that exh(p) assigns true to p, the “prejacent”, and assigns false to each
of the “innocently excludable alternatives”, henceforth “IE alternatives”, of p.1

We present Fox’s 2007 proposal in (1), where AIE
p is the set of IE alternatives

of p and
∨

S is the proposition that at least one member of S is true, for any
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1 More precisely, exh(p) assigns true to p and assigns false to each of the IE alter-

natives of p which are relevant. For the purpose of this discussion, we will make the
simplifying assumption that the alternatives are all relevant. We do not believe this
assumption affects our argument..
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set S of propositions.2 Innocent exclusion is defined in (2), where Ap is the set
of alternatives of p.

(1) Fox’s (2007) proposal
a. The strengthened meaning of p is expressed by exh(p)
b. exh(p) ⇔def p ∧

(
AIE

p �= ∅ → ¬∨
AIE

p

)

(2) Fox’s (2007) definition of AIE
p

(i) Take all maximal sets of propositions from Ap which can be assigned
false consistently with p

(ii) q ∈ AIE
p iff q is in all such sets

To illustrate, consider the Venn diagram below. Let p be the prejacent and q, r,
s, t and p itself be its alternatives.3 Logical relations are represented spatially
in the familiar way. Thus, we have p ⇒ (s ∨ r ∨ t), (s ∧ t) ⇒ ⊥, for example.

(3)
p

q

r

s t

The maximal sets of propositions from Ap which can be assigned false consis-
tently with p are listed in (4).

(4) a. {q, r, s}
b. {q, r, t}
c. {q, s, t}

Note that neither {r, s, t} nor {q, r, s, t} is listed, as (¬r ∧ ¬s ∧ ¬t) ⇒ ¬p. Now,
looking at (4), we see that only q is a member of all three sets. Thus, only q is an
IE alternative of p, which means exh(p) ⇔ p∧¬q. This proposition is indicated
by the gray area in (5).

2 The attentive reader will notice that the definition in (1b) contains a redundancy.
Specifically, AIE

p �= ∅ → ¬ ∨
AIE

p is equivalent to ¬ ∨
AIE

p , as
∨ ∅ is the contradic-

tion. The intuition which we want this redundant formulation to reflect is that the
computation proceeds only under the condition that the relevant set of altermatives
is not empty. That condition is logically idle for this case but not for all of the cases
which we will discuss..

3 We assume, as is standard, that every sentence is an alternative of itself (cf. Fox and
Katzir 2011).
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(5)

exh(p) ⇔ p ∧ ¬q

p

q

r

s t

The process of exhaustification, as represented by exh, can therefore be
described, informally, as that of trying to assign false to as many alternatives as
possible, preserving consistency with the prejacent.

1.2 Inclusion

Bar-Lev and Fox (2017, 2020), henceforth BLF, propose that the exhaustivity
operator be modified. Specifically, they argue that it should be not exh but
exh′, as defined in (6b), where exh remains as defined in (1b), AII

p is the set of
“innocently includable alternatives”, henceforth “II alternative”, of p, and

∧
S

is the proposition that every member of S is true, for any set S of propositions.4

Innocent inclusion is defined in (7).

(6) BLF’s proposal
a. The strengthened meaning of p is expressed by exh′(p)
b. exh′(p) ⇔def exh(p) ∧

(
AII

p �= ∅ → ∧
AII

p

)

(7) BLF’s definition of AII
p

(i) Take all maximal sets of propositions from Ap which can be assigned
true consistently with exh(p)

(ii) q ∈ AII
p iff q is in all such sets

What exh′(p) does, then, is assign true to exh(p) and also assign true to each of
the innocently includable alternatives of p.5. Consider, again, the Venn diagram
in (3). Let us ask which among q, r, s, t and p itself is an II alternative of p. The
maximal sets of propositions from Ap which can be assigned true consistently
with exh(p) are listed in (8).

(8) a. {p, r, s}
b. {p, r, t}

4 Again, there is redundancy in (6b), as
∧ ∅ is the tautology. See note 2.

5 Note that BLF claims that II alternatives are assigned true obligatorily (cf. Bar-Lev
and Fox 2017, 111). Thus, the inferences associated with them cannot be cancelled
by them being considered irrelevant, as is possible in the case of IE alternatives (see
note 1)..
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Note that neither {p, s, t} nor {p, r, s, t} is listed: since s ∧ t is contradictory,
no set containing s and t is consistent. Now, looking at the two sets in (8),
we see that only p and r are members of both. This means only p and r are II
alternatives of p, and that exh′(p) ⇔ exh(p)∧p∧r ⇔ p∧¬q∧r. This proposition
is indicated by the gray area in (9).

(9)

exh′(p) ⇔ p ∧ ¬q ∧ r

p

q

r

s t

The process of exhaustification, as represented by exh′, can therefore be
described, informally, as that of (i) trying to assign false to as many alternatives
as possible, preserving consistency with the prejacent, and then (ii) trying to
assign true to as many alternatives as possible, preserving consistency with the
output of (i). Thus, exh′(p) is a strengthening of exh(p). We can see this by
comparing the gray area of (5) with the gray area of (9): the latter is a subpart
of the former.

1.3 Empirical Motivation for exh′

BLF present a series of empirical arguments for identifying the strengthened
meaning of p with exh′(p) instead of exh(p). Given the scope of this note, we
will recite only one. The reader is invited to consult Bar-Lev and Fox (2017,
2020) to learn about the others.

The relevant data point is the sentence in (10), which has been argued to
license the inferences in (10a) and (10b) (cf. Chemla 2009).

(10) No student is required to solve both problem A and problem B
¬∃x�(Px ∧ Qx)

a. � No student is required to solve problem A ¬∃xPx
b. � No student is required to solve problem B ¬∃xQx

The syntactic analysis of (10) at the relevant level, i.e. its Logical Form, is
assumed to be something like (11).

(11) [α no student λx [β is required to [γ tx solve A and tx solve B]]]

Given that required and and are both strong scalar items, exhaustifying β
or γ will be semantically inconsequential.6 The only scope site left for possibly
non-vacuous exhaustification is the matrix node, which means the exhaustivity
6 Because exh(p ∧ q) = exh′(p ∧ q) = p ∧ q, and exh(�p) = exh′(�p) = �p.
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operator must be applied to α. BLF take the alternatives of α to be derived from
α by replacing no (¬∃) with not every (¬∀), and with or, γ with its individual
conjuncts, and α with itself.7 We then have (12).

(12) a. Prejacent: ¬∃x�(Px ∧ Qx)
b. Alternatives: ¬∃x�(Px∧Qx), ¬∃x�(Px∨Qx), ¬∃x�Px, ¬∃x�Qx,

¬∀x�(Px ∧ Qx), ¬∀x�(Px ∨ Qx), ¬∀x�Px, ¬∀x�Qx
c. IE alternatives: ¬∃x�(Px ∨ Qx), ¬∀x�(Px ∨ Qx)
d. II alternatives: ¬∃x�(Px ∧ Qx), ¬∃x�Px, ¬∃x�Qx, ¬∀x�(Px ∧

Qx), ¬∀x�Px, ¬∀x�Qx

The results of applying exh and exh′ to α, with the redundancies removed,
amount to (13a) and (13b), respectively.

(13) a. exh
(¬∃x�(Px ∧ Qx)

) ⇔ ¬∃x�(Px ∧ Qx) ∧ ∀x�(Px ∨ Qx)
b. exh′(¬∃x�(Px ∧ Qx)

) ⇔ ¬∃x�(Px ∧ Qx) ∧ ∀x�(Px ∨ Qx) ∧
¬∃x�Px ∧ ¬∃x�Qx

We can see that the attested inferences can be derived with exh′ but not with
exh. More specifically, there is no way to derive these inferences with exh, but
there is one way to derive them with exh′.8

2 A More Inclusive Inclusion

2.1 Conceptual Motivation for Inclusion

BLF mention a “possible underlying conception” which they say has “guided
[their] thinking”.

(14) Possible underlying conception (Bar-Lev and Fox 2020, 186)
Exhaustifying p with respect to a set of alternatives C should get us as
close as possible to a cell in the partition induced by C

We quote from (Bar-Lev and Fox 2020, 186): “[...] [T]he goal of [the exhaustivity
operator] is to come as close as possible to an assignment of a truth value to
every alternative, i.e., to a cell in the partition that the set of alternatives induces
7 The assumption that no (¬∃) alternates with not every (¬∀) is based on the

analysis of no which decomposes it into not and some (cf. Zeijlstra 2004; Penka
2011), and on the view about alternative generation according to which negation is
not replaced (cf. Romoli 2012). See Bar-Lev and Fox (2020, 198, note 32) on this
point. Also, see Bar-Lev and Fox (2020, 198–200) for some independent reasons to
assume that � does not alternate with � in this case.

8 BLF point out that recursive application of exh does not help (cf. Bar-Lev and Fox
2020, 196). Note, also, that there is, in addition to the inferences in (10a) and (10b),
another inference derived in (13b), namely ∀x�(Px ∨ Qx). This inference is really
optional, since it should only arise if the alternative ¬∀x�(Px ∨ Qx) is considered
relevant, which it does not have to be. Again, we consider, for the purpose of this
note, all alternatives to be relevant. (See note 1 and 5.).
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[...] [The exhaustivity operator] is designed such that, when possible, it would
yield a complete answer to the question formed by the set of alternatives. If
this conception is correct, one would think that [it] shouldn’t only exclude, i.e.,
assign false to as many alternatives as possible, but should also include, i.e.,
assign true to as many alternatives as possible once the exclusion is complete”.

Looking at (5) and (9), we can see clearly how this idea plays out. The
proposition expressed by exh(p) consists of five cells in the partition induced by
the alternatives, while the proposition expressed by exh′(p) consists of three of
these five cells. Thus, exhautification by exh′ gets us closer to a single cell than
exhaustification by exh.

2.2 Introducing exh′′

Nothing in the definitions of innocent exclusion and innocent inclusion rules out
the possibility of alternatives which are neither innocently excludable nor inno-
cently includable. We will call such alternatives the “remaining alternatives”, or
“R alternatives” for short. Now let us entertain the hypothesis in (15), where
AR

p is the set of R alternatives of p and exh′ is as defined in (6b).9

(15) Hypothesis
a. The strengthened meaning of p is expressed by exh′′(p)
b. exh′′(p) ⇔def exh′(p) ∧

(
AR

p �= ∅ → ∨
AR

p

)

(16) Definition of AR
p

q ∈ AR
p iff q ∈ Ap ∧ q �∈ AIE

p ∧ q �∈ AII
p

The new exhaustivity operator we are considering, exh′′, involves a more “inclu-
sive” inclusion than exh′. Specifically, exh′′(p) not only includes the II alterna-
tives by assigning true to each of them, but also “includes” the R alternatives by
assigning true to their disjunction. Thus, exh′′(p) is a strengthening of exh′(p),
which means exh′′ actually comes closer to BLF’s “underlying conception” of
exhaustification than exh′. We can see this by looking at (17), where the gray
area represents exh′′(p).

9 Note that the condition that AR
p not be empty is significant here. We want to capture

the intuition that if there is no R alternative, the system would just output exh′(p).
Specifically, we do want it to not output the contradiction in case AR

p is empty, which
is what would happen if exh′′(p) were defined as exh′(p) ∧ ∨

AR
p .
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(17)

exh′′(p) ⇔ p ∧ ¬q ∧ r ∧ (s ∨ t)

p

q

r

s t

Comparing (17) to (9), we see that the proposition expressed by exh′(p) consists
of three cells and the proposition expressed by exh′′(p) consists of two of those
three cells. Thus, exh′′(p) is closer to a complete answer of the question formed
by the set of alternatives than exh′(p).

2.3 A Resemblance

Kratzer (1977, 1981, 1991) propose that modality is “double relative”. Specifi-
cally, the quantification domain D of a modal operator is specified in terms of
two sets of propositions, a “modal base” M and an “ordering source” O,10 in
the following way.

(18) Derivation of D from M and O

a. Take all maximal sets of propositions from O which can be assigned
true consistently with

∧
M

b. D is the result of conjoining
∧

M with
(i) propositions that are in all such sets
(ii) the disjunction of the remaining propositions in O

A necessity statement �a is then true iff a is entailed by D, and a possibility
statement �a is true iff a is consistent with D.

As we can see, the two steps (18b-i) and (18b-ii) resemble the inclusion of
II and R alternatives, respectively. Thus, if we identify

∧
M with exh(p) and

O with Ap − AIE
p , then we can identify D with exh′′(p). Let us, again, use our

Venn diagram to illustrate. Suppose M = {p,¬q} and O = {r, s, t}. Then D is
the gray area, which corresponds to exh′′(p). Importantly, D is not the dotted
area, which corresponds to exh′(p).

10 Technically, the two sets of propositions are values of the modal base and the order-
ing source at the evaluation world, as these are functions from worlds to sets of
propositions. The reader is invited to consult Kratzer (1977, 1981, 1991) for a more
precise and sophisticated presentation of her theory. Relevant secondary literature
includes von Fintel and Heim (2011); Frank (1996), among others.
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(19)
p

q

r

s t

M = {p,¬q}
O = {r, s, t}
D = p ∧ ¬q ∧ r ∧ (s ∨ t)
D �= p ∧ ¬q ∧ r

We will illustrate with an example. Let us give the following meanings to r,
s, and t.11

(20) a. r = John volunteered as poll watcher
b. s = John voted Republican
c. t = John voted Democrat

And let it be common ground that p∧¬q.12 This will be the modal base. Suppose
that John’s father says he voted Republican (s), John’s mother says he voted
Democrat (t), and both of John’s parents say he volunteered as poll watcher (r).
This will be the ordering source. Now consider the following sentences.

(21) a. In view of what his parents say, it is possible that John volunteered
as poll watcher and voted Republican �(r ∧ s)

b. In view of what his parents say, it is possible that John volunteered
as poll watcher and did not vote �(r ∧ ¬s ∧ ¬t)

If D = p∧¬q ∧ r, the dotted area, we expect both (21a) and (21b) to be true, as
both r∧s and r∧¬s∧¬t are consistent with p∧¬q∧r. If D = p∧¬q∧r∧(s∨t), the
gray area, we expect (21a) to be true and (21b) to be false, as r ∧ s is consistent
with p ∧ ¬q ∧ r ∧ (s ∨ t) but r ∧ ¬s ∧ ¬t is not. Our intuition is that (21a) is true
and (21b) is false. This fact constitutes evidence that D is p ∧ ¬q ∧ r ∧ (s ∨ t),
the gray area, and not p ∧ ¬q ∧ r, the dotted area.

3 A Conjecture

The Kratzerian inclusion of the ordering source involves including the disjunction
of propositions which are not “innocently includable”. Thus, it resembles the
inclusion step of exh′′, not that of exh′. Our judgement about (21a) and (21b)
confirms that Kratzer is correct.

11 We will assume that one can vote for only one party, and that the only choices are
Republican and Democrat.

12 In other words, let what we know be consistent with r, s, t, r ∧ s, r ∧ t, and let it
assymetrically entail r∨s∨ t. For concreteness, we can take this body of information
to be the proposition that John lived in D.C and either voted or volunteered as poll
watcher.
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What about exh′ and exh′′ themselves? We have seen how they differ for-
mally. Are there cases which distinguish them empirically? Let us look again at
the definition of exh′′.

(22) exh′′(p) ⇔def exh′(p) ∧
(
AR

p �= ∅ → ∨
AR

p

)

Logically, exh′(p) and exh′′(p) will be equivalent in two scenarios.

(23) exh′(p) ⇔ exh′′(p) iff either (a) or (b) holds
a. exh′(p) ⇒ ∨

AR
p

b. AR
p = ∅

Consider (23a) first. This scenario is instantiated by plain disjunctions such as
(24).

(24) John talked to Mary or Sue (p ∨ q)
a. Alternatives: p ∨ q, p, q, p ∧ q
b. IE alternatives: p ∧ q
c. II alternatives: p ∨ q
d. R alternatives: p, q
e. exh′(p ∨ q) ⇔ (p ∨ q) ∧ ¬(p ∧ q)

Now consider (23b). This scenario is exemplified by (10), discussed in Sect. 1.3.
As the reader can see from (12), the IE and II alternatives of (10) exhaust the
set of its alternatives. Thus, there are no R alternatives left.

Another case where every alternative is either IE or II is one involving the
scalar items all, many, some. Consider the three sentences in (25).

(25) a. John did all of the homeworks
b. John did many of the homeworks
c. John did some of the homeworks

Each of these sentences has all three as alternatives. This means that for (25a),
every alternative is II. For (25b), (25a) is IE while (25b) and (25c) are II. And
for (25c), (25a) and (25b) are IE while (25c) is II.

When will exh′(p) and exh′′(p) not be equivalent? Obviously when both (23a)
and (23b) are false. Has a case been discussed in the literature which exemplifies
this possibility? The answer to this question, we believe, is negative. As far as we
know, all cases considered in the literature on exhaustification so far, including
those discussed in Bar-Lev and Fox (2017, 2020), are either an instance of (23a)
or an instance of (23b). We conjecture that this holds generally for all cases of
exhaustification.

(26) Strengthened Meaning Conjecture (SMC)
There is no sentence p in natural language such that the strengthened
meaning of p is exh′(p) but not exh′′(p)
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From our discussion in Sects. 2.1 and 2.3, it is clear that the exhaustivity operator
could in principle be exh′′, not exh′, and that the distinction between exh′′ and
exh′ could in principle make an empirical difference. We could imagine the facts
about semantic strengthening to be such that they adjudicate between the two
different inclusion procedures involved in exhaustification, just as facts about
modality do with respect to the ordering source. So what is missing? We believe
that SMC will follow given a complete theory of alternatives. In other words, we
believe that such a theory would rule out the scenario in (3) as a grammatical
impossibility. We therefore formulate the following challenge for future research.

(27) Challenge
Construct the theory of alternatives so that SMC follows

4 Conclusion

Bar-Lev and Fox (2017, 2020) propose to add inclusion to exhaustification. In
addition to providing empirical arguments for their proposal, they also note that
the addition makes conceptual sense given the natural understanding of seman-
tic strengthening as an attempt by the grammar to get as close as possible to a
complete answer to the question formed by the set of alternatives. We discuss a
variant of inclusion which would better represent this attempt than the variant
proposed by Bar-Lev and Fox. We show that the new variant resembles the inclu-
sion of ordering sources in Kratzer’s (1977, 1981, 1991) theory of modality. We
point out that the two variants end up being empirically equivalent for the cases
of strengthened meaning so far considered in the literature. We conjecture that
this equivalence is a general fact about exhaustification, and pose the challenge
of deriving it for future research.
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