

Alternatives of exceptives

Tue Trinh

Leibniz-Zentrum
Allgemeine Sprachwissenschaft

SPAGAD Speech Acts
in Grammar and Discourse

SinFonIJA 16
Masaryk University, 23/09/2023

1 Introduction

2 Two Anti-Fintelian analyses

- QP modifier analysis
- Clausal analysis

3 Proposal

4 Issues for further research

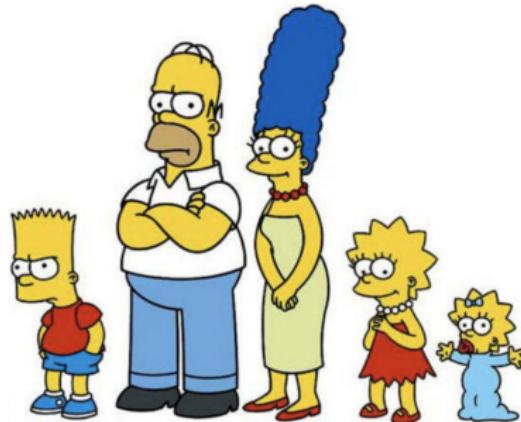
exceptives: basic facts

(1) all students except John and Mary came to the meeting

(2) Inferences

- a. John and Mary are students *containment*
- b. John and Mary did not come to the meeting *negation*
- c. all other students came to the meeting *otherness*

(3) Distribution


- a. all students except John and Mary came to the meeting
- b. #some students except John and Mary came to the meeting

agenda

- there are two schools of thought on exceptives
 - the **Fintelians** take exceptives to be NP modifiers
von Fintel (1993); Gajewski (2008); Hirsch (2016); Crnič (2018)
 - the **Anti-Fintelians** take them to be something else
Moltmann (1995); Vostrikova (2021)
- goal of this talk
 - present a novel observation
 - discuss the problem it poses for two Anti-Fintelians
 - propose a Fintelian analysis

what's the observation?

Simpsons

(4) a. all members of the Simpson family except Homer want to go to the concert

b. #all five members of the Simpson family except Homer want to go to the concert

Argentinians

(5) a. all eleven Argentinian players got a yellow card
b. #all eleven Argentinian players except Messi and Otamendi got a yellow card

Beatles

(6) a. all members of the Beatles except John Lennon were interviewed by the press

b. ~~#~~all four members of the Beatles except John Lennon were interviewed by the press

the generalization

cardinal determiners do not tolerate exceptives

one more example

(7) a. both parents of the child came to the meeting
b. #both parents of the child except his father came to the meeting

quick solution

- Cardinal determiners imposes a condition on the size of their restrictor

$$(8) \quad \begin{aligned} \text{a. } \llbracket \text{all eleven} \rrbracket &= \lambda P : |P| = 11. \lambda Q. \forall x : Px \rightarrow Qx \\ \text{b. } \llbracket \text{both} \rrbracket &= \lambda P : |P| = 2. \lambda Q. \forall x : Px \rightarrow Qx \end{aligned}$$

- exceptives are NP modifiers and have subtractive semantics (von Fintel, 1993; Gajewski, 2008; Hirsch, 2016; Crnič, 2018)

$$(9) \quad \llbracket \text{A except B} \rrbracket = \llbracket \text{A} \rrbracket \setminus \llbracket \text{B} \rrbracket$$

- exceptives give rise to presupposition failure

$$(10) \quad \begin{aligned} \text{a. } \# \text{all eleven } [P \text{ Argentinian players except Messi and } \\ \text{Otamendi}] [Q \text{ got a yellow card}] & \quad |P| \neq 11 \\ \text{b. } \# \text{both } [P \text{ parents of the child except his father}] [Q \text{ came to } \\ \text{the meeting}] & \quad |P| \neq 2 \end{aligned}$$

not so quick...

- the deviance persists under appropriate change of the numeral

(11) a. #all nine [P Argentinian players except Messi and Otamendi]
got a yellow card $|P| = 9$

b. #both [P members of the Beaux Arts trio except Menahem
Pressler] came to the meeting $|P| = 2$

c. #all three [P members of the Beatles except Lennon] were
interviewed $|P| = 3$

hunch

(12) $[D_{\#} \text{ NP except } X] \dots$

- a. requires that both **NP** and **NP except X** satisfy the presupposition of $D_{\#}$
- b. $|NP| \neq |NP \text{ except } X|$

1 Introduction

2 Two Anti-Fintelian analyses

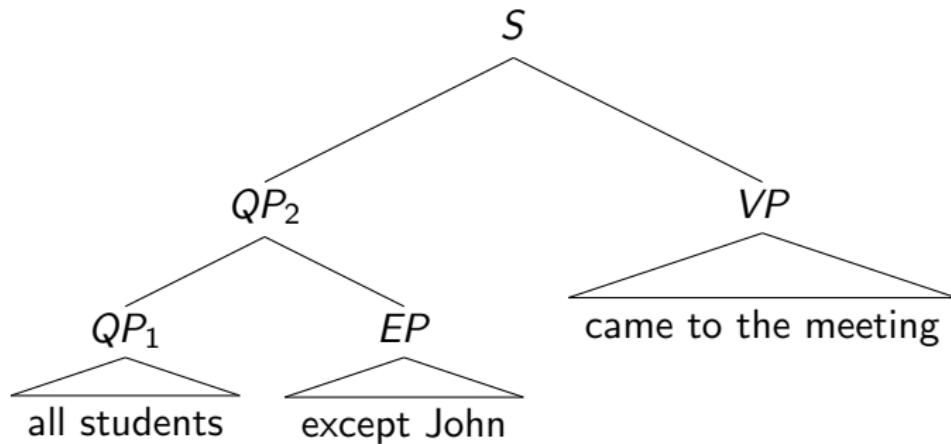
- QP modifier analysis
- Clausal analysis

3 Proposal

4 Issues for further research

1 Introduction

2 Two Anti-Fintelian analyses


- QP modifier analysis
- Clausal analysis

3 Proposal

4 Issues for further research

Moltmann (1995)

(13)

(14) Deriving the denotation of QP_2

- take the set of predicates denoted by QP_1
- remove John from each of those predicates

inferences

Scenario: $\underbrace{a, b, c}_{\text{students}}, \underbrace{d, e}_{\text{non-students}}$

(15) $[s [QP_2 [QP_1 \text{ all students}] \text{ [except } b\text{]}] \text{ [VP came]}]$

- $\llbracket QP_1 \rrbracket = \{\{a, b, c\}, \{a, b, c, d\}, \{a, b, c, e\}, \{a, b, c, d, e\}\}$
- $\llbracket QP_2 \rrbracket = \{\{a, b, c\}, \{a, b, c, d\}, \{a, b, c, e\}, \{a, b, c, d, e\}\}$
- $\llbracket S \rrbracket = 1 \text{ iff } \llbracket VP \rrbracket \in \llbracket QP_2 \rrbracket$
 $\rightarrow \text{negation \& otherness}$

(16) $\# [s [QP_2 [QP_1 \text{ all students}] \text{ [except } d\text{]}] \text{ [VP came]}]$

- $\llbracket QP_1 \rrbracket = \{\{a, b, c\}, \{a, b, c, d\}, \{a, b, c, e\}, \{a, b, c, d, e\}\}$
- $\llbracket QP_2 \rrbracket = \#$
problem: d cannot be removed from each predicate in $\llbracket QP_1 \rrbracket$
 $\rightarrow \text{containment}$

distribution

Scenario: $\underbrace{a, d, c}_{\text{students}}, \quad \underbrace{b, e}_{\text{non-students}}$

(17)#[s [QP_2 [QP_1 some students] [except b]] [VP came]]

- $\llbracket QP_1 \rrbracket = \{\{a, d, e\}, \{b, d, e\}, \{c, d, e\}, \{a, b, d, e\}, \dots\}$
- $\llbracket QP_2 \rrbracket = \#$

problem: b cannot be removed from each predicate in $\llbracket QP_1 \rrbracket$

→ **some** does not tolerate exceptives

problem with cardinality

Scenario: $\underbrace{a, b, c}_{\text{students}}, \quad \underbrace{d, e}_{\text{non-students}}$

(18) $[s [QP_2 [QP_1 \text{ all three students}] \text{ [except } b\text{]}] \text{ [VP came]}]$

- $\text{[all three]} = \lambda P : |P| = 3. \lambda Q. \forall x. Px \rightarrow Qx$
- $\text{[QP}_1\text{]} = \{\{a, b, c\}, \{a, b, c, d\}, \{a, b, c, e\}, \{a, b, c, d, e\}\}$
- $\text{[QP}_2\text{]} = \{\{a, b, c\}, \{a, b, c, d\}, \{a, b, c, e\}, \{a, b, c, d, e\}\}$
- $\text{[S]} = 1 \text{ iff } \text{[VP]} \in \text{[QP}_2\text{]}$

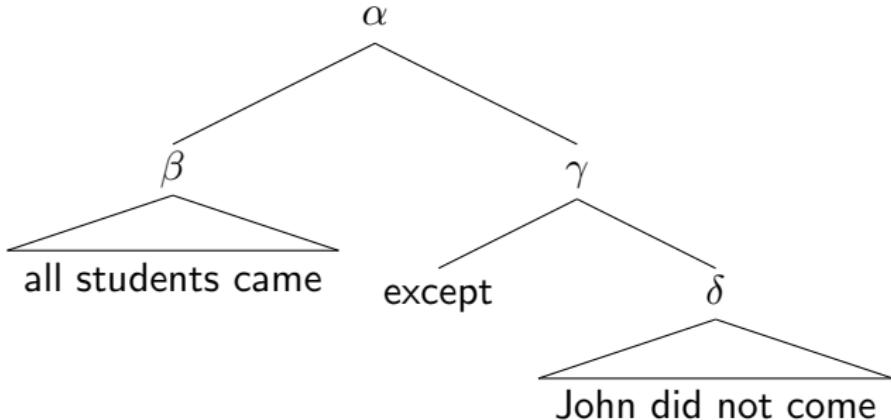
→ the sentence is predicted to be fine if there are three students

1 Introduction

2 Two Anti-Fintelian analyses

- QP modifier analysis
- Causal analysis

3 Proposal


4 Issues for further research

main idea

- Vostrikova (2021) takes the exceptive phrase to be an elliptical clause

(19) all students except John came

- PF = all students except John ~~did not come~~ came
- LF =

inferences

(20) $[\alpha [\beta \text{ all students came}] [\gamma \text{ except } [\delta \text{ John did not come}]]]$

(21) $[\alpha]^{w_0} = 1$ iff

a. $[\delta]^{w_0} = 1$

'John did not come'

\rightarrow *negation*

b. $\forall w. [\delta]^w = 1 \rightarrow [\text{all}]^w([\text{students}]^{w_0})([\text{came}]^w) = 0$

'John did not come \Rightarrow an actual student did not come'

\rightarrow *containment*

c. $\forall w. ([\delta]^w = 0 \wedge [\text{came}]^w \setminus \{j\} = [\text{came}]^{w_0} \setminus \{j\})$

$\rightarrow [\text{all}]^w([\text{students}]^{w_0})([\text{came}]^w) = 1$

'If John had come, all students would have come'

\rightarrow *otherness*

distribution

(22) $[\alpha [\beta \text{ some student } t_\gamma \text{ came}] [\gamma \text{ except } [\delta \text{ John did not come}]]]$

(23) $[\alpha]^{w_0} = 1$ iff

a. $[\delta]^{w_0} = 1$

'John did not come'

b. $\forall w. [\delta]^w = 1 \rightarrow [\text{some}]^w([\text{students}]^{w_0})([\text{came}]^w) = 0$

'John did not come \Rightarrow no actual student came'

c. $\forall w. ([\delta]^w = 0 \wedge [\text{came}]^w \setminus \{j\} = [\text{came}]^{w_0} \setminus \{j\})$

$$\rightarrow [\text{some}]^w([\text{students}]^{w_0})([\text{came}]^w) = 1$$

'If John had come, an actual student would have come'

(23b) and (23c) require John to be the only student, which means (22a) is a violation of Maximize Presupposition

problem with cardinality

(24) $\#[\alpha [\beta \text{ all seven students came}] [\gamma \text{ except } [\delta \text{ John did not come}]]]$

(25) $[\alpha]^{w_0} = 1$ iff

- a. $[\delta]^{w_0} = 1$
'John did not come'
- b. $\forall w. [\delta]^w = 1 \rightarrow [\text{all seven}]^w([\text{students}]^{w_0})([\text{came}]^w) = 0$
'John did not come \Rightarrow one of the actual seven students did not'
- c. $\forall w. ([\delta]^w = 0 \wedge [\text{came}]^w \setminus \{j\} = [\text{came}]^{w_0} \setminus \{j\})$
 $\rightarrow [\text{all seven}]^w([\text{students}]^{w_0})([\text{came}]^w) = 1$
'If John had come, all seven students would have come'

\rightarrow the sentence is predicted to be fine if there are seven students

1 Introduction

2 Two Anti-Fintelian analyses

- QP modifier analysis
- Clausal analysis

3 Proposal

4 Issues for further research

subtraction & exhaustification

- exceptives are subtractive NP modifiers and associates with EXH

(26) a. $[\text{NP students [except John and Mary]}] = \text{students} \setminus \{j, m\}$
 b. EXH [all students [except John and Mary]_F came]

- EXH assigns 1 to the prejacent and 0 to every alternative which is defined and not entailed by the prejacent

(27) $\llbracket \text{EXH } S \rrbracket = 1 \text{ iff}$
 a. $\llbracket S \rrbracket = 1$
 b. $\forall S' \in \text{ALT}(S) : \llbracket S \rrbracket \not\subseteq \llbracket S' \rrbracket \wedge \llbracket S' \rrbracket \text{ is defined} \rightarrow \llbracket S' \rrbracket = 0$

- EXH comes with non-idleness requirement

(28) $\# \llbracket \text{EXH } S \rrbracket \text{ if } \llbracket \text{EXH } S \rrbracket \Leftrightarrow S$

cf. von Fintel (1993); Gajewski (2008); Hirsch (2016); Crnič (2018)

punch line

exceptives introduce **subdomain** alternatives

subdomain alternatives

(29) all students [except John and Mary] came

- a. all students\{*j, m*\} came ✓
- b. all students\{*j*\} came ✓
- c. all students\{*m*\}
- d. all students\{ \ } came ✓
- e. all students\{*j, b*\} came ✗
- f. all students\{*b, m*\} came ✗
- g. all students\{*b*\} ✗

deriving the inferences of exceptives

(30) S EXH [_A all students except John and Mary came]

- A all students\{*j, m*\} came
- B all students\{*j*\} came
- C all students\{*m*\} came
- D all students\{ \} came

(31) a. A $\not\subseteq$ B, C, D

b. S = 1 iff A = 1 and B, C, D = 0

(32) a. John is not a student \vee John came \Rightarrow A = C

b. Mary is not a student \vee Mary came \Rightarrow A = B

→ both John and Mary are students (*containment*), neither came (*negation*), and all other students came (*otherness*)

deriving the distribution of exceptives

(33) S EXH [A some student except John and Mary came]

- A some students\{*j, m*\} came
- B some students\{*j*\} came
- C some students\{*m*\} came
- D some students\{ \ } came

(34) a. $A \subseteq B, C, D$

b. $S = 1$ iff $A = 1$

~~ EXH is idle!

solving the cardinality problem

(35) S EXH [A [all seven [students except John and Mary]] came]

- A all seven students\{*j, m*\} came
- B all seven students\{*j*\} came
- C all seven students\{*m*\} came
- D all seven students\{ \} came

(36) a. if there are nine students, then none of B, C, D is defined and EXH is idle

b. if there are not nine students, then A is not defined, which means S is not defined

importance of condition on alternatives

suppose exceptives have standard Katzirian alternatives...

(37) S EXH [[all seven [students except John and Mary]] came]

- A all seven students\{*j, m*\} came
- B all seven students\{*j, b*\} came
- C all seven students\{*b, m*\} came
- D all seven students\{*m, b*\} came
- E all seven students\{*j*\} came
- F all seven students\{*m*\} came
- G all seven students\{*b*\} came
- H all seven students\{ \} came

(38) If there are nine students

- a. A, B, C, D are defined and E, F, G, H are not
- b. S = 1 iff A = 1 and B, C, D = 0

1 Introduction

2 Two Anti-Fintelian analyses

- QP modifier analysis
- Clausal analysis

3 Proposal

4 Issues for further research

precision

- Moltmann (1995) observes that the larger the number, the more tolerant a cardinal determiner is of exceptives

(39) a. #all four students except John came
b. all four hundred students except John came

- however, the relevant factor seems to be how precise, not how large

(40) a. all four hundred students except John came
b. #all four hundred and one students except John came

cf. Krifka (2002, 2007)

relative sizes of NP and EP

- it seems the smaller NP/EP is, the less acceptable EP is
 - (41) a. all members of congress except the most radical leftists voted for the bill
 - b. #all members of congress except the democrats voted for the bill

I thank Luka Crnič, Naomi Francis, Daniel Goodhue, Manfred Krifka, Clemens Mayr, Stephanie Solt, and Katia Vostrikova for valuable input and discussion. This work is supported by the ERC Advanced Grant “Speech Acts in Grammar and Discourse” (SPAGAD), ERC-2007-ADG 787929. All errors are my own.

Crnič, Luka. 2018. A note on connected exceptives and approximatives. *Journal of Semantics* 35:741–756.

von Fintel, Kai. 1993. Exceptive constructions. *Natural Language Semantics* 1:123–148.

Gajewski, Jon. 2008. NPI *any* and connected exceptive phrases. *Natural Language Semantics* 16:69–110.

Hirsch, Aron. 2016. An unexceptional semantics for expressions of exception. *UPenn Working Papers in Linguistics* 22:139–148.

Krifka, Manfred. 2002. Be brief and vague! And how bidirectional optimality theory allows for Verbosity and Precision. In *Sounds and Systems. Studies in Structure and Change: A Festschrift for Theo Vennemann*, ed. David Restle and Dietmar Zaefferer. Berlin: Mouton De Gruyter.

Krifka, Manfred. 2007. *Approximate interpretation of number words*, 111–126. Humboldt-Universität zu Berlin, Philosophische Fakultät II.

Moltmann, Friederike. 1995. Exception sentences and polyadic quantification. *Linguistics and Philosophy* 18:223–280.

Vosrikova, Ekaterina. 2021. Conditional analysis of clausal exceptives. *Natural Language Semantics* 29:159–227.