

Notes on counting and L-analyticity

We present quantitative data regarding some novel observations about the numeral **zero**. We propose a tentative account of these observations, and discuss the implications it has for existing theories of exhaustification and L-analyticity, and the semantics of **zero**. We start by noting that **zero** cannot be modified by the superlative quantifier **at least** if it refers to the scalar endpoint 0, see (1a) v (1b).

(1) a. there are at least two students in the classroom
b. *there are at least zero students in the classroom

To support the empirical claim in (1), we conducted an experiment on Amazon MTurk. 32 English speakers rated the naturalness of 4 sentences like (1a) and (1b) on a 4-point scale. Sentences with **at least two** received the highest score 4 ('natural') by $\geq 50\%$ of all subjects, while sentences with **at least zero** received the two lowest scores 2 and 1 ('weird') by $\geq 50\%$ of all subjects. The difference in the means of the scores (3.4 v 2.0) is highly significant ($p < 2.2^{-16}$).

To derive the deviance of (1b), we assume for exposition that $[\![\text{at least } n]\!](P)(Q) = 1$ iff $|P \cap Q| \geq n$, where n is a bare numeral and n the scale point that it refers to. Moreover, we follow Fox & Hackl (2006) in assuming that (modified) numerals belong to the 'logical' vocabulary of natural languages. Then, (1b) is analytically true and, moreover, L-analytically true (henceforth written as "(1b) $\Leftrightarrow_L \top$ "), since **at least zero** belongs to the 'logical skeleton' of (1b) and denotes a constant function with value 1 (truth). Therefore, (1b) is ungrammatical (Gajewski 2003).

Implications for the theory of exhaustification and L-analyticity: We explore the potential consequences of exhaustifying L-analytically true expressions, and conclude that exhaustification cannot obviate ungrammaticality induced by L-analyticity. First, we observe that exhaustification of (1b) is semantically inconsequential. That is, if exh_C is an exhaustifying operator that respects innocent excludability (Fox 2007), then the structure in (2a), which contains exh_C , has the same truth condition as the corresponding structure without exh_C , see (2c), given that the domain C is the set in (2b) (or any other set containing only alternatives that contradict each other). Thus, (1b) does not provide a testing ground for our exploration.

(2) *there are at least zero students (in the classroom)
a. $[\psi \text{ exh}_C [\phi \text{ there are at least zero students}]]$
b. $C = \{\text{there are more than zero students, there are exactly zero students}\}$
c. $\psi \Leftrightarrow \phi \Leftrightarrow_L \top$

non-excludable

non-excludable

However, we observe that deviance persists with embedding of **at least zero** under a universal quantifier, see (3a) and (3b). To support these judgments, we conducted an experiment on Amazon MTurk. Specifically, we tested the claim that **every ...at least zero** has a different status from **every ...zero or more**, **every ...at least two**, and **every ...two or more** (157 subjects giving 1 'weird'/'not weird' judgment per sentence type). The proportion of 'weird' responses to **every ...at least zero** is greater than that to its **zero or more** counterpart (40% and 28%, respectively, $p = 0.01605$). In contrast, the proportions of 'weird' responses to **every ...at least two** and **every ...two or more** are equal (7% and 12%, respectively, $p = 0.34$) and smaller from **every ...at least zero** and **every ...zero or more**.

(3) a. *every human has at least zero children
b. *you are required to read at least zero books

Importantly, if exhaustification could obviate ungrammaticality (3a) and (3b) would be expected to be non-deviant. Here is why: given that (3b) has the parse in (4a), it has the non-tautological truth condition in (4c) (expressing free choice to not read a book and to read a book), since the alternatives in C do not contradict each other and are hence innocently excludable, see (4b).

(4) a. $[\psi \text{ exh}_C [\phi \text{ you are required to read at least zero books}]]$

b. $C = \{\text{you are req. to read more than zero books, you are req. to read exactly zero books}\}$

$\underbrace{\hspace{30em}}$ excludable $\underbrace{\hspace{30em}}$ excludable

c. $\psi \Leftrightarrow \diamond \text{you read exactly 0 books} \wedge \diamond \text{you read more than 0 books} \not\Leftrightarrow \top$

Therefore, we conclude that L-analyticity cannot be obviated by embedding under **exh**. Further support for this conclusion comes from the independent observation that the L-analytically true expression ***there is every student** (Barwise & Cooper 1981)) is not salvaged by exhaustification (relative to the alternative **there is a student**), which it would be if exhaustification could obviate L-analyticity. These considerations support the assumption that L-analyticity is indeed a type of ungrammaticality: it behaves like other types of ungrammaticality (e.g. agreement mismatch, case violation), which is also not salvageable by syntactic embedding.

Implications for the semantics of the bare numeral zero: Bylinina & Nouwen (2018) (hereforth *B&N*) argue that the sentence **there are zero students** has two parses, the ungrammatical parse in (5a) and the grammatical parse in (5b), where exh_C is an exhaustifying operator like that assumed above.

(5) a. ${}^*[\phi \text{ there are zero students}]$
 b. $[\psi \text{ exh}_C [\phi \text{ there are zero students}]]$

B&N derive the ungrammaticality of (5a) from the truth condition in (6a), in conjunction with the assumption that the extension of every plural predicate includes the object \perp (the greatest lower bound $a \sqcap b$ of any two distinct members a and b of a singular predicate) and that the numerosity of this object is 0 (i.e., $\#\perp = 0$). That is, they argue that (5a) is ungrammatical because of its trivial truth condition (6a).

(6) a. $\llbracket \phi \rrbracket = 1 \Leftrightarrow \exists x(x \in \llbracket \text{students} \rrbracket \wedge \#x = 0) \Leftrightarrow \top$
b. $\llbracket \psi \rrbracket = 1 \Leftrightarrow \exists x(x \in \llbracket \text{students} \rrbracket \wedge \#x = 0) \wedge \neg \exists x(x \in \llbracket \text{students} \rrbracket \wedge \#x > 0) \not\Rightarrow \top$

Furthermore, B&N argue that the structure in (5b) is not ungrammatical because it has the non-trivial truth condition in (6b), which they derive from the assumption that C contains the (logically stronger) alternatives $\exists x(x \in \llbracket \text{students} \rrbracket \wedge \#x = n)$ (for $n > 0$). However, the data discussed in the previous section suggest that L-analyticity cannot be obviated by exhaustification. Therefore, we reject B&N's assumption that the maximality/exhaustive aspect of the meaning of the bare numeral **zero** is syntactically represented.

We close by noting that the nature of the scale that the semantic evaluation of **at least zero** is based on matters for the (un)grammaticality of expressions in which **at least zero** occurs. That is, if **zero** does not refer to the 0 endpoint of the scale, as is the case for the Celsius scale in (7), no deviance arises:

(7) the temperature is at least zero degrees celsius

The contrast between (1b) and (7) mirrors the contrast between ***approximately zero students** and **approximately zero degrees celsius** (Solt 2014). We leave for future research to determine if the triviality of applying an approximator to **zero students** can be conceived of as L-analyticity.

References

Barwise, J., and R. Cooper. 1981. Generalized quantifiers and natural language. *Linguistics and Philosophy* 4:159–219.

Bylinina, L. and R. Nouwen. 2018. On “zero” and semantic plurality. *Glossa* 3(1):98. 1–23.

Fox, D. 2007. Free choice disjunction and the theory of scalar implicatures. In *Presupposition and Implicature in Compositional Semantics*, ed. U. Sauerland and P. Stateva, 71–120. Palgrave-Macmillan.

Fox, D. and M. Hackl. 2006. The universal density of measurement. *Linguistics and Philosophy* 29. 537–586.

Gajewski, J. 2003. L-analyticity in natural language. Manuscript, MIT.

Solt, S. 2014. An alternative theory of imprecision. In *Proceedings of SALT 24*, 514–533.