Comparing the derivation of modal domains and strengthened meanings

Overall summary — The derivation of modal domains in the theory proposed by
Kratzer (1981, 1991) and the derivation of exhaustified meanings in the theory pro-
posed by Bar-Lev and Fox (2020) both involve conjoining a proposition with as many
propositions in a set as possible. In the case of modal domains, the set in question is
the ordering source. In the case of exhaustified meanings, it is the set of scalar alter-
natives. In this talk, we provide a reformulation of the two theories which brings out
clearly what distinguishes Kratzer’s procedure from Bar-Lev and Fox’s. We argue that
the distinction is one without difference: the empirical cases which Bar-Lev and Fox
presented to support their theory turn out to be those in which the two procedures
yield the same results. We note that Kratzer’s procedure actually comes closer to the
process of “cell identification” which Bar-Lev and Fox considered to be a motivation
for their procedure. We also point out that the equivalence of the two procedures is not
a consequence of current theories of alternatives, and hence, that such theories may be
missing a generalization.

1. Reformulation of Kratzer’s theory — Kratzer (1981, 1991) derives the domain of a
modal operator in terms of two sets of propositions: B, the modal base at the evaluation
world, and O, the ordering source at the evaluation world. Let & be the function which
maps a proposition p and a set of propositions C to a set of subsets of C each of which
contains as many members of C as can be consistently conjoined with p

(1) h(p,C):={C"| C’is a maximal subset of C such that p A AC’ is consistent}
And let b := AB, the conjunction of all propositions in B. Then,

(2) d:=bA ANk(b,0) AV (Uk(b,0) — Nh(b,0))

will represent the modal domain. Thus, Up < Nd C pand Op & Nd € —p.
2. Reformulation of Bar-Lev & Fox’s theory — Bar-Lev_and Fox (2020) derives the
meaning of exh(A)(p), which expresses the “strengthened” meaning of p given the set
of alternatives A, in terms of IE(p, A), the set of “innocently excludable” alternatives
of pin A, and II(p, A), the set of “innocently includable” alternatives of p in A.

3 exh(A)(p) & Alr |7 € L(p, A)} A N-q | q € IE(p, A)}

Let e be the conjunction of p and the negation of the IE alternatives, i.e. ¢ := p A
AN —q | g€ IE(p,A)}. Then,

(4) m:=eA ANNh(e, A)
will be the meaning of exh(A)(p), where the function / is as defined in [T).

3. Comparison — As we can see from [2) and (4), there are similarity and difference
between how d relates to b and O on the one hand and how m relates to e and A on
the other. The similarity is this: d entails the conjunction of propositions contained in
all members of (b, O), and m, in the same way, entails the conjunction of propositions
contained in all members of (e, A). The difference is this: d entails the disjunction of
propositions contained in some but not all members of h(b, O), but m, on the contrary,
does not entail the disjunction of propositions contained in some but not all members
of h(e, A).

4. A distinction without a difference — Let us now imagine a meaning m’ for
exh(A)(p) which makes the step from e to exh(A, p) completely parallel to the step
from b to d in Kratzer’s theory.

5)  m' =gepe AN A\Nh(e, A) AV (Uh(e, A) — Nh(e, A))
Then, let us ask the questlon What tells us that exh(A)(p) is m instead of m'? We
believe the answer is “nothing”. Bar-L.ev. and Fox (202()) discussed several cases which
are explained by the assumption that exh(A)(p) = m. It turns out, however, that these



cases will also be explained by the assumption that exh(A)(p) = m’, because they are
instances in which m and m’ are equivalent. Specifically, they are cases where [6) holds.

6) eA ANh(e, A) = \/(Uh(e, A) — Nh(e, A))
4.1. Plain disjunctions — Consider exh(A)(p) where p = John talked to Mary or Sue. In
this case, we have Uh(e, A) — Nh(e, A) = {mary, sue}, hence \/ (Uh(e, A) — Nh(e, A)) =
\/{mary,sue} = mary V sue. Since e = (mary V sue) A =(mary A sue), (6) holds, which
means m = m'.
4.2. Free choice disjunctions — Consider exh(A)(p) where p = John is allowed to talk to
Mary or Sue. In this case, we have Uh(e, A) — Nh(e, A) = @, which means \/ (Uh(e, A)
— Nh(e, A)) = \/@ = T, as the disjunction of every proposition in @ is the disjunction
of every proposition, i.e. T. Since T is entailed by every proposition, this case is also
one where [6) holds, i.e. where m = m’.
4.3. Other cases — In Bar-Lev & Fox’s terminology, Nh(e, A) is the set of innocently
includable alternatives (II-alternatives), while Uh(e, A) is the set of alternatives that
are not innocently excludable (non-IE-alternatives). If every non-IE-alternative is an II-
alternative, it will hold that \/ (Uh(e, A) — Nh(e, A)) = V@ = T. Except for the case of
plain disjunction which also instantiates as shown above, all other cases discussed
in Bar-Lev and Fox (202() are similar to the case of free choice disjunctions in the sense
that they involve non-IE-alternatives all of which are innocently includable. In other
words, they are all cases where Uh(e, A) — Nh(e, A) = @ (cf. Bar-Lev_and Fox P020:
197, 202, 206, 210, 213-214, 216-217). We believe this holds generally in the literature
(cf. e.g. Crni¢ P2019). We will discuss these cases in the talk.
5. Conceptual considerations — Bar-Lev and Fox (2020: 186) presents a possible under-
lying conception, which they call “cell identification,” that has guided their thinking
in proposing m as the meaning of exh(A)(p).

(7) Exhaustifying p with respect to a set of alternatives C should get us as close as

possible to a cell in the partition induced by C

The partition induced by the set of alternatives consititutes the question under dis-
cussion (Groenendijk and Stokhof 1984, Lewis 1988). Exhaustification is an attempt to
get close to a complete answer. The more alternatives it assigns truth values to, the
more cells are eliminated. Under this perspective, it is actually m’, not m, which is
a more natural candidate for exh(A)(p), since m’ eliminates not only cells where m
is false but also cells where \/(Uh(e, A) — Nh(e, A)) is false, whereas m only elimi-
nates cells where m is false. Another conceptual reason for prefering m’ to m is that m’
would make the derivation of strengthened meanings more similar to the derivation
of modal domains, and thus would reveal the same mechanism being operative in two
seemingly unrelated processes.
6. The nature of alternatives — Suppose we have exhi(A)(p) with the following proper-
ties: () A ={p,q, 1,5t} ) p = (rvsVi) Qi) pA-qArAs# L,Av) pA-qgAr At #
L;v) (pA—=gArAs)AN(pA—gArAt)= L. Then we would have m = p A =g Arand
m' =pA-gArA(sVt),and would be able to distinguish between the hypothesis that
exh(A)(p) = m and the hypothesis that exi(A)(p) = m’. It is not clear to us whether
any theory of alternatives on the market would exclude this scenario. Given that its
non-existence is either contingent or necessary, we should either look for a case which
instantiates it or formulate the theory of alternatives in such a way as to rule it out.
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